

What is Biodiesel?

- Biodiesel consists of alkyl-esters derived from a biological source
- Biodiesel can be used as a fuel in compression ignition engines (i.e. diesels)

 Can be blended with petroleum diesel in any ratio (e.g. B2, B20, B100)

What is Biodiesel?

- Vegetable oils (soy, canola, palm) are the most commonly used oils for biodiesel production.
- All common oils can be converted (i.e. plant oils, animal fats, waste cooking oil)

Why Biodiesel?

IT'S RENEWABLE!

Why Biodiesel?

Non-toxic

- LD50 of 17.4 g/kg
 - ten times less toxic than table salt
- Less skin irritation than a 4% soap solution
 - very mild irritation
- Insignificant aquatic toxicity
 - 1000mg/L is lethal to bluegill

Why Biodiesel?

Reduced air pollution

- Sulfur emissions are greatly reduced
 - Equivalent to ultra low sulfur diesel now required by EPA
- EPA Criteria pollutants are reduced
 - unburned hydrocarbons
 - carbon monoxide
 - particulate matter

Effects on Air Quality

Reduced air pollution

- Reduces health risks associated with petroleum diesel:
 - **75-85%** reduction of polycyclic aromatic hydrocarbons (PAH)
 - 90% reduction of nitrated polycyclic aromatic hydrocarbons (nPAH).

These have been identified as carcinogens

AVERAGE BIODIESEL EMISSIONS COMPARED TO CONVENTIONAL DIESEL, ACCORDING TO EPA

Emission Type	B100	B20
Regulated		
Total Unburned Hydrocarbons Carbon Monoxide Particulate Matter Nox	-67% -48% -47% +10%	-20% -12% -12% +2% to -2%
Non-Regulated		
Sulfates PAH (Polycyclic Aromatic Hydrocarbons)** nPAH (nitrated PAH's)** Ozone potential of speciated HC	-100% -80% -90% -50%	-20%* -13% -50%*** -10%
* Estimated from B100 result ** Average reduction across all compounds measured		

*** 2-nitroflourine results were within test method variability

Source: EPA Emissions Evaluation for the National Biodiesel Board

Biodiesel Vs Petrodiesel

Basic Emission Correlation. Average emission impacts of biodiesel for heavy-duty highway engines. Source: U.S. EPA².

2: EPA Emissions Evaluation for the National Biodiesel Board

Environmental Benefits

Homegrown

- Can be grown from local oil crops
- Biodegradable
 - Biodiesel degrades at ~the same rate as dextrose
 - Environmentally positive (no oil spill disasters)

Some other important considerations

- Fits existing fuel infrastructure
 - Runs in current diesel engines
 - Can be stored at existing petrol stations
 - · Can be transported like petroleum diesel
- Higher flashpoint than petroleum diesel
 - Classified as non-flammable by OSHA (150 °C)
 - Safer to handle and transport, safer in accidents
- Provides lubricating properties
 - Reduces engine wear
 - Extends engine life

What's the Catch?

Feedstock Supply

There simply isn't enough oil to turn into biodiesel!

Feedstock Supply

 Devoting all 2005 U.S. soybean production to biodiesel would have offset 6.0% of U.S. diesel demand.

Source: Hill et al. 2006. Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. Proceedings of the National Academy of Sciences, 103:30 11206-11210

Feedstock Supply

 However, because of the fossil energy required to produce biodiesel, this change would provide a net energy gain equivalent to just 2.9%.

Source: Hill et al. 2006. Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. Proceedings of the National Academy of Sciences, 103:30 11206-11210

Feedstock Supply Solutions

- 1. Use less fuel by increasing efficient
- 2. Recycle waste cooking oil
- 3. Get creative in oil crops!
 - Tremendous botanical potential
 - Sesame (Sesamum indicum)
 - ✓ Camelina (Camelina sativa)
 - Jatropha (Jatropha curcus)
 - Castor (Ricinus communis)
 - ✓ Tallow (Sapium sebifera)
 - Algae (~40,000 species)

The Biodiesel Production Process

How is Biodiesel Made?

A TRANSESTERIFICATION reaction of vegetable (or animal) lipids with a low molecular weight <u>alcohol</u> (methanol) produces biodiesel

 This reaction is catalyzed by a base, typically: Sodium Hydroxide (NaOH) or Potassium Hydroxide (KOH)

Transcendental Transesterification

- TRANS= CHANGE
- ESTERIFICATION = CREATING AN ESTER
- OIL + ALCOHOL = GLYCEROL + ALKYL ESTERS (BIODIESEL)
- **A BASE AND HEAT ARE REACTION CATALYSTS**

- In the context of biodiesel transesterification is:
 - the replacment of the glycerol portion of the oil with methanol or ethanol

A Note on Safety

- An alcohol is required in the production of Biodiesel
 - methanol is typically used
- Methanol is a flammable neurotoxin
 - However, so is gasoline (a quite common fuel)

-Safety precautions <u>MUSt</u> be used when handling, transporting, or producing methanol:

- no sparks
- no smoking
- proper ventilation
- proper safety equipment: gloves, goggles, etc.